A practical guide to creating a custom AI coding assistant using open-source models, APIs, and frameworks.
Welcome, fellow code wranglers, to the wild frontier of AI-powered development! Remember when autocomplete was considered high-tech? Those were simpler times. These days, if your IDE isn't capable of refactoring your entire codebase while simultaneously making coffee and telling you dad jokes, are you even a professional developer?
If you've ever wished your IDE could do more than just squiggle red lines under your typos—like, say, write your unit tests, refactor your legacy code, or even offer emotional support when you're debugging at 3 AM—then you're in the right place.
In this article, we'll embark on a journey to build your very own AI coding assistant. Not just any assistant, but one that actually understands your codebase, your team's idioms, and maybe even your questionable variable naming choices (we all have them, don't deny it). We'll cover the architecture, model selection, prompt engineering, and integration with your favorite IDEs. And yes, there will be plenty of C# code examples, because nothing says "I'm a serious developer" like a language with both curly braces AND semicolons.
"But wait," I hear you protest, "there are already commercial AI assistants that cost approximately one kidney per month! Why build my own?"
Excellent question, hypothetical reader. Sure, there are commercial tools out there, but building your own means you get to:
Let's start with a high-level view of what we're building. Like any good developer, we're going to start with an over-engineered architecture diagram and work backward.
Your AI coding assistant will need:
Here's a simple diagram:
flowchart TD
A[Your IDE] <--> B[Assistant]
B <--> C[AI Model]
B <--> D[Knowledge Base]
Let's break down each component:
The core of your assistant is, unsurprisingly, the AI model. This is the neural network that will understand code, generate suggestions, and occasionally hallucinate syntax that hasn't been invented yet.
Your assistant needs a way to talk to you and understand your requests. This could be a CLI tool (for the terminal purists), a chat window (for the more conversational), or an IDE plugin (for maximum productivity/distraction).
Without context, your AI is just guessing. With context, it's making educated guesses! Your assistant needs to understand:
Modern AI assistants aren't just chat interfaces—they can take actions. Your assistant might:
You don't need to mortgage your house to use a good language model (though having a few spare GPUs lying around certainly helps). Open-source options like Llama, Mistral, CodeLlama, or even smaller models can be surprisingly capable. The LLM landscape has changed dramatically in recent years, and now there are models specifically fine-tuned for code generation that won't break the bank or require a nuclear power plant to run.
For working with C# specifically, you'll want a model that's been trained on lots of .NET repositories. Here's a quick comparison of options as of 2025:
Model | Size | C# Capabilities | Hardware Requirements | Hallucination Level |
---|---|---|---|---|
CodeAssistant-7B | 7B | Good | Consumer GPU | Occasionally invents NuGet packages |
DevLlama-13B | 13B | Excellent | Good Gaming PC | Mostly realistic |
SharpGPT-34B | 34B | Outstanding | Small Server | Almost human-like |
MINT-2B | 2B | Basic | CPU Only | "Creative" |
Pro tip: If your model starts suggesting goto
statements or tries to convince you that Hungarian notation is making a comeback, it's time to retrain or update your weights.
Speaking of training, let's discuss how you might fine-tune a base model for C# coding. The process looks something like this:
Let's implement a data collector in C#:
using System;
using System.IO;
using System.Linq;
using System.Threading.Tasks;
using LibGit2Sharp;
using System.Text.RegularExpressions;
public class CSharpTrainingDataCollector
{
private readonly string _outputDirectory;
private readonly ILogger _logger;
public CSharpTrainingDataCollector(string outputDirectory, ILogger logger)
{
_outputDirectory = outputDirectory;
_logger = logger;
if (!Directory.Exists(_outputDirectory))
{
Directory.CreateDirectory(_outputDirectory);
}
}
public async Task CollectFromGitHubRepositoryAsync(string repoUrl, string branch = "main")
{
try
{
_logger.LogInformation($"Cloning repository: {repoUrl}");
// Create a temporary directory for the clone
var tempDir = Path.Combine(Path.GetTempPath(), Guid.NewGuid().ToString());
Directory.CreateDirectory(tempDir);
// Clone the repository
Repository.Clone(repoUrl, tempDir, new CloneOptions
{
BranchName = branch,
Checkout = true
});
_logger.LogInformation("Repository cloned. Processing C# files...");
// Find all C# files
var csharpFiles = Directory.GetFiles(tempDir, "*.cs", SearchOption.AllDirectories);
_logger.LogInformation($"Found {csharpFiles.Length} C# files");
foreach (var file in csharpFiles)
{
await ProcessCSharpFileAsync(file);
}
// Cleanup
Directory.Delete(tempDir, true);
_logger.LogInformation("Processing complete");
}
catch (Exception ex)
{
_logger.LogError($"Error processing repository: {ex.Message}");
}
}
private async Task ProcessCSharpFileAsync(string filePath)
{
try
{
var content = await File.ReadAllTextAsync(filePath);
// Skip files that are too small or likely to be generated code
if (content.Length < 100 || IsLikelyGeneratedCode(content))
{
return;
}
// Apply cleaning rules
var cleaned = CleanCodeForTraining(content);
// Skip if too little content remains after cleaning
if (cleaned.Length < 100)
{
return;
}
// Save to output with a unique name
var fileName = $"{Path.GetFileNameWithoutExtension(filePath)}_{Guid.NewGuid():N}.cs";
var outputPath = Path.Combine(_outputDirectory, fileName);
await File.WriteAllTextAsync(outputPath, cleaned);
}
catch (Exception ex)
{
_logger.LogWarning($"Skipping file {filePath}: {ex.Message}");
}
}
private bool IsLikelyGeneratedCode(string content)
{
// Check for common markers of generated code
return content.Contains("// <auto-generated>") ||
content.Contains("[GeneratedCode") ||
content.Contains("// This code was generated");
}
private string CleanCodeForTraining(string content)
{
// Remove comments (this is a simplified approach)
content = Regex.Replace(content, @"//.*$", "", RegexOptions.Multiline);
content = Regex.Replace(content, @"/\*[\s\S]*?\*/", "");
// Normalize whitespace
content = Regex.Replace(content, @"\r\n", "\n");
content = Regex.Replace(content, @"\n{3,}", "\n\n");
// Add more cleaning rules as needed
return content;
}
}
Let's look at how you might set up a local model server for your assistant. Here's a C# example using a hypothetical .NET library for loading and running LLMs:
using SharpLLM;
using SharpLLM.Models;
using Microsoft.Extensions.Logging;
public class LocalModelServer
{
private readonly ILogger<LocalModelServer> _logger;
private readonly LlmEngine _engine;
private readonly CodeCompletionModel _model;
public LocalModelServer(ILogger<LocalModelServer> logger)
{
_logger = logger;
// Initialize the LLM engine with appropriate settings
_logger.LogInformation("Initializing LLM engine...");
_engine = new LlmEngine(new LlmOptions
{
GpuLayerCount = 32, // How many layers to offload to GPU
ContextSize = 16384, // Max tokens in context window
MemoryLimit = 8192, // Max RAM usage in MB
CacheLocation = Path.Combine(Environment.GetFolderPath(
Environment.SpecialFolder.LocalApplicationData), "CodeAssistant", "Cache")
});
// Load the model - in a real application, you'd want to make this configurable
_logger.LogInformation("Loading CodeAssistant-7B model...");
_model = _engine.LoadModel<CodeCompletionModel>("CodeAssistant-7B",
quantizationLevel: QuantizationLevel.Int8); // 8-bit quantization to save memory
_logger.LogInformation("Model loaded successfully. Ready to process requests.");
}
public async Task<string> GenerateCompletionAsync(string prompt, CancellationToken cancellationToken = default)
{
try
{
_logger.LogDebug($"Received prompt: {prompt.Substring(0, Math.Min(50, prompt.Length))}...");
var parameters = new GenerationParameters
{
MaxTokens = 2048,
Temperature = 0.2, // Lower temperature for more deterministic code completions
TopP = 0.95,
StopSequences = new[] { "```", "/*", "*/" }
};
var result = await _model.GenerateCompletionAsync(prompt, parameters, cancellationToken);
_logger.LogDebug($"Generated {result.Tokens.Count} tokens in {result.GenerationTimeMs}ms");
return result.Text;
}
catch (Exception ex)
{
_logger.LogError(ex, "Error generating completion");
return $"// Error generating code: {ex.Message}";
}
}
public void Dispose()
{
_model?.Dispose();
_engine?.Dispose();
_logger.LogInformation("Model server shut down");
}
}
Your AI coding assistant will need:
Here's a simple diagram:
flowchart TD
A[Your IDE] <--> B[Assistant]
B <--> C[AI Model]
B <--> D[Knowledge Base]
Let's break down each component:
The core of your assistant is, unsurprisingly, the AI model. This is the neural network that will understand code, generate suggestions, and occasionally hallucinate syntax that hasn't been invented yet.
Your assistant needs a way to talk to you and understand your requests. This could be a CLI tool (for the terminal purists), a chat window (for the more conversational), or an IDE plugin (for maximum productivity/distraction).
Without context, your AI is just guessing. With context, it's making educated guesses! Your assistant needs to understand:
Modern AI assistants aren't just chat interfaces—they can take actions. Your assistant might:
You don't need to mortgage your house to use a good language model (though having a few spare GPUs lying around certainly helps). Open-source options like Llama, Mistral, CodeLlama, or even smaller models can be surprisingly capable. The LLM landscape has changed dramatically in recent years, and now there are models specifically fine-tuned for code generation that won't break the bank or require a nuclear power plant to run.
For working with C# specifically, you'll want a model that's been trained on lots of .NET repositories. Here's a quick comparison of options as of 2025:
Model | Size | C# Capabilities | Hardware Requirements | Hallucination Level |
---|---|---|---|---|
CodeAssistant-7B | 7B | Good | Consumer GPU | Occasionally invents NuGet packages |
DevLlama-13B | 13B | Excellent | Good Gaming PC | Mostly realistic |
SharpGPT-34B | 34B | Outstanding | Small Server | Almost human-like |
MINT-2B | 2B | Basic | CPU Only | "Creative" |
Pro tip: If your model starts suggesting goto
statements or tries to convince you that Hungarian notation is making a comeback, it's time to retrain or update your weights.
Speaking of training, let's discuss how you might fine-tune a base model for C# coding. The process looks something like this:
Let's implement a data collector in C#:
using System;
using System.IO;
using System.Linq;
using System.Threading.Tasks;
using LibGit2Sharp;
using System.Text.RegularExpressions;
public class CSharpTrainingDataCollector
{
private readonly string _outputDirectory;
private readonly ILogger _logger;
public CSharpTrainingDataCollector(string outputDirectory, ILogger logger)
{
_outputDirectory = outputDirectory;
_logger = logger;
if (!Directory.Exists(_outputDirectory))
{
Directory.CreateDirectory(_outputDirectory);
}
}
public async Task CollectFromGitHubRepositoryAsync(string repoUrl, string branch = "main")
{
try
{
_logger.LogInformation($"Cloning repository: {repoUrl}");
// Create a temporary directory for the clone
var tempDir = Path.Combine(Path.GetTempPath(), Guid.NewGuid().ToString());
Directory.CreateDirectory(tempDir);
// Clone the repository
Repository.Clone(repoUrl, tempDir, new CloneOptions
{
BranchName = branch,
Checkout = true
});
_logger.LogInformation("Repository cloned. Processing C# files...");
// Find all C# files
var csharpFiles = Directory.GetFiles(tempDir, "*.cs", SearchOption.AllDirectories);
_logger.LogInformation($"Found {csharpFiles.Length} C# files");
foreach (var file in csharpFiles)
{
await ProcessCSharpFileAsync(file);
}
// Cleanup
Directory.Delete(tempDir, true);
_logger.LogInformation("Processing complete");
}
catch (Exception ex)
{
_logger.LogError($"Error processing repository: {ex.Message}");
}
}
private async Task ProcessCSharpFileAsync(string filePath)
{
try
{
var content = await File.ReadAllTextAsync(filePath);
// Skip files that are too small or likely to be generated code
if (content.Length < 100 || IsLikelyGeneratedCode(content))
{
return;
}
// Apply cleaning rules
var cleaned = CleanCodeForTraining(content);
// Skip if too little content remains after cleaning
if (cleaned.Length < 100)
{
return;
}
// Save to output with a unique name
var fileName = $"{Path.GetFileNameWithoutExtension(filePath)}_{Guid.NewGuid():N}.cs";
var outputPath = Path.Combine(_outputDirectory, fileName);
await File.WriteAllTextAsync(outputPath, cleaned);
}
catch (Exception ex)
{
_logger.LogWarning($"Skipping file {filePath}: {ex.Message}");
}
}
private bool IsLikelyGeneratedCode(string content)
{
// Check for common markers of generated code
return content.Contains("// <auto-generated>") ||
content.Contains("[GeneratedCode") ||
content.Contains("// This code was generated");
}
private string CleanCodeForTraining(string content)
{
// Remove comments (this is a simplified approach)
content = Regex.Replace(content, @"//.*$", "", RegexOptions.Multiline);
content = Regex.Replace(content, @"/\*[\s\S]*?\*/", "");
// Normalize whitespace
content = Regex.Replace(content, @"\r\n", "\n");
content = Regex.Replace(content, @"\n{3,}", "\n\n");
// Add more cleaning rules as needed
return content;
}
}
Let's look at how you might set up a local model server for your assistant. Here's a C# example using a hypothetical .NET library for loading and running LLMs:
using SharpLLM;
using SharpLLM.Models;
using Microsoft.Extensions.Logging;
public class LocalModelServer
{
private readonly ILogger<LocalModelServer> _logger;
private readonly LlmEngine _engine;
private readonly CodeCompletionModel _model;
public LocalModelServer(ILogger<LocalModelServer> logger)
{
_logger = logger;
// Initialize the LLM engine with appropriate settings
_logger.LogInformation("Initializing LLM engine...");
_engine = new LlmEngine(new LlmOptions
{
GpuLayerCount = 32, // How many layers to offload to GPU
ContextSize = 16384, // Max tokens in context window
MemoryLimit = 8192, // Max RAM usage in MB
CacheLocation = Path.Combine(Environment.GetFolderPath(
Environment.SpecialFolder.LocalApplicationData), "CodeAssistant", "Cache")
});
// Load the model - in a real application, you'd want to make this configurable
_logger.LogInformation("Loading CodeAssistant-7B model...");
_model = _engine.LoadModel<CodeCompletionModel>("CodeAssistant-7B",
quantizationLevel: QuantizationLevel.Int8); // 8-bit quantization to save memory
_logger.LogInformation("Model loaded successfully. Ready to process requests.");
}
public async Task<string> GenerateCompletionAsync(string prompt, CancellationToken cancellationToken = default)
{
try
{
_logger.LogDebug($"Received prompt: {prompt.Substring(0, Math.Min(50, prompt.Length))}...");
var parameters = new GenerationParameters
{
MaxTokens = 2048,
Temperature = 0.2, // Lower temperature for more deterministic code completions
TopP = 0.95,
StopSequences = new[] { "```", "/*", "*/" }
};
var result = await _model.GenerateCompletionAsync(prompt, parameters, cancellationToken);
_logger.LogDebug($"Generated {result.Tokens.Count} tokens in {result.GenerationTimeMs}ms");
return result.Text;
}
catch (Exception ex)
{
_logger.LogError(ex, "Error generating completion");
return $"// Error generating code: {ex.Message}";
}
}
public void Dispose()
{
_model?.Dispose();
_engine?.Dispose();
_logger.LogInformation("Model server shut down");
}
}
Your AI coding assistant will need:
Here's a simple diagram:
flowchart TD
A[Your IDE] <--> B[Assistant]
B <--> C[AI Model]
B <--> D[Knowledge Base]
Let's break down each component:
The core of your assistant is, unsurprisingly, the AI model. This is the neural network that will understand code, generate suggestions, and occasionally hallucinate syntax that hasn't been invented yet.
Your assistant needs a way to talk to you and understand your requests. This could be a CLI tool (for the terminal purists), a chat window (for the more conversational), or an IDE plugin (for maximum productivity/distraction).
Without context, your AI is just guessing. With context, it's making educated guesses! Your assistant needs to understand:
Modern AI assistants aren't just chat interfaces—they can take actions. Your assistant might:
You don't need to mortgage your house to use a good language model (though having a few spare GPUs lying around certainly helps). Open-source options like Llama, Mistral, CodeLlama, or even smaller models can be surprisingly capable. The LLM landscape has changed dramatically in recent years, and now there are models specifically fine-tuned for code generation that won't break the bank or require a nuclear power plant to run.
For working with C# specifically, you'll want a model that's been trained on lots of .NET repositories. Here's a quick comparison of options as of 2025:
Model | Size | C# Capabilities | Hardware Requirements | Hallucination Level |
---|---|---|---|---|
CodeAssistant-7B | 7B | Good | Consumer GPU | Occasionally invents NuGet packages |
DevLlama-13B | 13B | Excellent | Good Gaming PC | Mostly realistic |
SharpGPT-34B | 34B | Outstanding | Small Server | Almost human-like |
MINT-2B | 2B | Basic | CPU Only | "Creative" |
Pro tip: If your model starts suggesting goto
statements or tries to convince you that Hungarian notation is making a comeback, it's time to retrain or update your weights.
Speaking of training, let's discuss how you might fine-tune a base model for C# coding. The process looks something like this:
Let's implement a data collector in C#:
using System;
using System.IO;
using System.Linq;
using System.Threading.Tasks;
using LibGit2Sharp;
using System.Text.RegularExpressions;
public class CSharpTrainingDataCollector
{
private readonly string _outputDirectory;
private readonly ILogger _logger;
public CSharpTrainingDataCollector(string outputDirectory, ILogger logger)
{
_outputDirectory = outputDirectory;
_logger = logger;
if (!Directory.Exists(_outputDirectory))
{
Directory.CreateDirectory(_outputDirectory);
}
}
public async Task CollectFromGitHubRepositoryAsync(string repoUrl, string branch = "main")
{
try
{
_logger.LogInformation($"Cloning repository: {repoUrl}");
// Create a temporary directory for the clone
var tempDir = Path.Combine(Path.GetTempPath(), Guid.NewGuid().ToString());
Directory.CreateDirectory(tempDir);
// Clone the repository
Repository.Clone(repoUrl, tempDir, new CloneOptions
{
BranchName = branch,
Checkout = true
});
_logger.LogInformation("Repository cloned. Processing C# files...");
// Find all C# files
var csharpFiles = Directory.GetFiles(tempDir, "*.cs", SearchOption.AllDirectories);
_logger.LogInformation($"Found {csharpFiles.Length} C# files");
foreach (var file in csharpFiles)
{
await ProcessCSharpFileAsync(file);
}
// Cleanup
Directory.Delete(tempDir, true);
_logger.LogInformation("Processing complete");
}
catch (Exception ex)
{
_logger.LogError($"Error processing repository: {ex.Message}");
}
}
private async Task ProcessCSharpFileAsync(string filePath)
{
try
{
var content = await File.ReadAllTextAsync(filePath);
// Skip files that are too small or likely to be generated code
if (content.Length < 100 || IsLikelyGeneratedCode(content))
{
return;
}
// Apply cleaning rules
var cleaned = CleanCodeForTraining(content);
// Skip if too little content remains after cleaning
if (cleaned.Length < 100)
{
return;
}
// Save to output with a unique name
var fileName = $"{Path.GetFileNameWithoutExtension(filePath)}_{Guid.NewGuid():N}.cs";
var outputPath = Path.Combine(_outputDirectory, fileName);
await File.WriteAllTextAsync(outputPath, cleaned);
}
catch (Exception ex)
{
_logger.LogWarning($"Skipping file {filePath}: {ex.Message}");
}
}
private bool IsLikelyGeneratedCode(string content)
{
// Check for common markers of generated code
return content.Contains("// <auto-generated>") ||
content.Contains("[GeneratedCode") ||
content.Contains("// This code was generated");
}
private string CleanCodeForTraining(string content)
{
// Remove comments (this is a simplified approach)
content = Regex.Replace(content, @"//.*$", "", RegexOptions.Multiline);
content = Regex.Replace(content, @"/\*[\s\S]*?\*/", "");
// Normalize whitespace
content = Regex.Replace(content, @"\r\n", "\n");
content = Regex.Replace(content, @"\n{3,}", "\n\n");
// Add more cleaning rules as needed
return content;
}
}
Let's look at how you might set up a local model server for your assistant. Here's a C# example using a hypothetical .NET library for loading and running LLMs:
using SharpLLM;
using SharpLLM.Models;
using Microsoft.Extensions.Logging;
public class LocalModelServer
{
private readonly ILogger<LocalModelServer> _logger;
private readonly LlmEngine _engine;
private readonly CodeCompletionModel _model;
public LocalModelServer(ILogger<LocalModelServer> logger)
{
_logger = logger;
// Initialize the LLM engine with appropriate settings
_logger.LogInformation("Initializing LLM engine...");
_engine = new LlmEngine(new LlmOptions
{
GpuLayerCount = 32, // How many layers to offload to GPU
ContextSize = 16384, // Max tokens in context window
MemoryLimit = 8192, // Max RAM usage in MB
CacheLocation = Path.Combine(Environment.GetFolderPath(
Environment.SpecialFolder.LocalApplicationData), "CodeAssistant", "Cache")
});
// Load the model - in a real application, you'd want to make this configurable
_logger.LogInformation("Loading CodeAssistant-7B model...");
_model = _engine.LoadModel<CodeCompletionModel>("CodeAssistant-7B",
quantizationLevel: QuantizationLevel.Int8); // 8-bit quantization to save memory
_logger.LogInformation("Model loaded successfully. Ready to process requests.");
}
public async Task<string> GenerateCompletionAsync(string prompt, CancellationToken cancellationToken = default)
{
try
{
_logger.LogDebug($"Received prompt: {prompt.Substring(0, Math.Min(50, prompt.Length))}...");
var parameters = new GenerationParameters
{
MaxTokens = 2048,
Temperature = 0.2, // Lower temperature for more deterministic code completions
TopP = 0.95,
StopSequences = new[] { "```", "/*", "*/" }
};
var result = await _model.GenerateCompletionAsync(prompt, parameters, cancellationToken);
_logger.LogDebug($"Generated {result.Tokens.Count} tokens in {result.GenerationTimeMs}ms");
return result.Text;
}
catch (Exception ex)
{
_logger.LogError(ex, "Error generating completion");
return $"// Error generating code: {ex.Message}";
}
}
public void Dispose()
{
_model?.Dispose();
_engine?.Dispose();
_logger.LogInformation("Model server shut down");
}
}
Your AI coding assistant will need:
Here's a simple diagram:
flowchart TD
A[Your IDE] <--> B[Assistant]
B <--> C[AI Model]
B <--> D[Knowledge Base]
Let's break down each component:
The core of your assistant is, unsurprisingly, the AI model. This is the neural network that will understand code, generate suggestions, and occasionally hallucinate syntax that hasn't been invented yet.
Your assistant needs a way to talk to you and understand your requests. This could be a CLI tool (for the terminal purists), a chat window (for the more conversational), or an IDE plugin (for maximum productivity/distraction).
Without context, your AI is just guessing. With context, it's making educated guesses! Your assistant needs to understand:
Modern AI assistants aren't just chat interfaces—they can take actions. Your assistant might:
You don't need to mortgage your house to use a good language model (though having a few spare GPUs lying around certainly helps). Open-source options like Llama, Mistral, CodeLlama, or even smaller models can be surprisingly capable. The LLM landscape has changed dramatically in recent years, and now there are models specifically fine-tuned for code generation that won't break the bank or require a nuclear power plant to run.
For working with C# specifically, you'll want a model that's been trained on lots of .NET repositories. Here's a quick comparison of options as of 2025:
Model | Size | C# Capabilities | Hardware Requirements | Hallucination Level |
---|---|---|---|---|
CodeAssistant-7B | 7B | Good | Consumer GPU | Occasionally invents NuGet packages |
DevLlama-13B | 13B | Excellent | Good Gaming PC | Mostly realistic |
SharpGPT-34B | 34B | Outstanding | Small Server | Almost human-like |
MINT-2B | 2B | Basic | CPU Only | "Creative" |
Pro tip: If your model starts suggesting goto
statements or tries to convince you that Hungarian notation is making a comeback, it's time to retrain or update your weights.
Speaking of training, let's discuss how you might fine-tune a base model for C# coding. The process looks something like this:
Let's implement a data collector in C#:
using System;
using System.IO;
using System.Linq;
using System.Threading.Tasks;
using LibGit2Sharp;
using System.Text.RegularExpressions;
public class CSharpTrainingDataCollector
{
private readonly string _outputDirectory;
private readonly ILogger _logger;
public CSharpTrainingDataCollector(string outputDirectory, ILogger logger)
{
_outputDirectory = outputDirectory;
_logger = logger;
if (!Directory.Exists(_outputDirectory))
{
Directory.CreateDirectory(_outputDirectory);
}
}
public async Task CollectFromGitHubRepositoryAsync(string repoUrl, string branch = "main")
{
try
{
_logger.LogInformation($"Cloning repository: {repoUrl}");
// Create a temporary directory for the clone
var tempDir = Path.Combine(Path.GetTempPath(), Guid.NewGuid().ToString());
Directory.CreateDirectory(tempDir);
// Clone the repository
Repository.Clone(repoUrl, tempDir, new CloneOptions
{
BranchName = branch,
Checkout = true
});
_logger.LogInformation("Repository cloned. Processing C# files...");
// Find all C# files
var csharpFiles = Directory.GetFiles(tempDir, "*.cs", SearchOption.AllDirectories);
_logger.LogInformation($"Found {csharpFiles.Length} C# files");
foreach (var file in csharpFiles)
{
await ProcessCSharpFileAsync(file);
}
// Cleanup
Directory.Delete(tempDir, true);
_logger.LogInformation("Processing complete");
}
catch (Exception ex)
{
_logger.LogError($"Error processing repository: {ex.Message}");
}
}
private async Task ProcessCSharpFileAsync(string filePath)
{
try
{
var content = await File.ReadAllTextAsync(filePath);
// Skip files that are too small or likely to be generated code
if (content.Length < 100 || IsLikelyGeneratedCode(content))
{
return;
}
// Apply cleaning rules
var cleaned = CleanCodeForTraining(content);
// Skip if too little content remains after cleaning
if (cleaned.Length < 100)
{
return;
}
// Save to output with a unique name
var fileName = $"{Path.GetFileNameWithoutExtension(filePath)}_{Guid.NewGuid():N}.cs";
var outputPath = Path.Combine(_outputDirectory, fileName);
await File.WriteAllTextAsync(outputPath, cleaned);
}
catch (Exception ex)
{
_logger.LogWarning($"Skipping file {filePath}: {ex.Message}");
}
}
private bool IsLikelyGeneratedCode(string content)
{
// Check for common markers of generated code
return content.Contains("// <auto-generated>") ||
content.Contains("[GeneratedCode") ||
content.Contains("// This code was generated");
}
private string CleanCodeForTraining(string content)
{
// Remove comments (this is a simplified approach)
content = Regex.Replace(content, @"//.*$", "", RegexOptions.Multiline);
content = Regex.Replace(content, @"/\*[\s\S]*?\*/", "");
// Normalize whitespace
content = Regex.Replace(content, @"\r\n", "\n");
content = Regex.Replace(content, @"\n{3,}", "\n\n");
// Add more cleaning rules as needed
return content;
}
}
Let's look at how you might set up a local model server for your assistant. Here's a C# example using a hypothetical .NET library for loading and running LLMs:
using SharpLLM;
using SharpLLM.Models;
using Microsoft.Extensions.Logging;
public class LocalModelServer
{
private readonly ILogger<LocalModelServer> _logger;
private readonly LlmEngine _engine;
private readonly CodeCompletionModel _model;
public LocalModelServer(ILogger<LocalModelServer> logger)
{
_logger = logger;
// Initialize the LLM engine with appropriate settings
_logger.LogInformation("Initializing LLM engine...");
_engine = new LlmEngine(new LlmOptions
{
GpuLayerCount = 32, // How many layers to offload to GPU
ContextSize = 16384, // Max tokens in context window
MemoryLimit = 8192, // Max RAM usage in MB
CacheLocation = Path.Combine(Environment.GetFolderPath(
Environment.SpecialFolder.LocalApplicationData), "CodeAssistant", "Cache")
});
// Load the model - in a real application, you'd want to make this configurable
_logger.LogInformation("Loading CodeAssistant-7B model...");
_model = _engine.LoadModel<CodeCompletionModel>("CodeAssistant-7B",
quantizationLevel: QuantizationLevel.Int8); // 8-bit quantization to save memory
_logger.LogInformation("Model loaded successfully. Ready to process requests.");
}
public async Task<string> GenerateCompletionAsync(string prompt, CancellationToken cancellationToken = default)
{
try
{
_logger.LogDebug($"Received prompt: {prompt.Substring(0, Math.Min(50, prompt.Length))}...");
var parameters = new GenerationParameters
{
MaxTokens = 2048,
Temperature = 0.2, // Lower temperature for more deterministic code completions
TopP = 0.95,
StopSequences = new[] { "```", "/*", "*/" }
};
var result = await _model.GenerateCompletionAsync(prompt, parameters, cancellationToken);
_logger.LogDebug($"Generated {result.Tokens.Count} tokens in {result.GenerationTimeMs}ms");
return result.Text;
}
catch (Exception ex)
{
_logger.LogError(ex, "Error generating completion");
return $"// Error generating code: {ex.Message}";
}
}
public void Dispose()
{
_model?.Dispose();
_engine?.Dispose();
_logger.LogInformation("Model server shut down");
}
}